Aerospace and Ocean Systems Lab

Hume Center - Aerospace and Ocean Systems Lab

The nature of the threat to deployed US national security platforms is changing: as we pivot from a more permissive counterterrorism environment of the last decade to the denied areas of nation-states for the coming decades, we face new challenges in every domain of war, especially the electromagnetic spectrum. Specifically, the new adversary is technologically agile and poses a larger threat to US command and control infrastructure.

To overcome these constraints, the US needs flexible, autonomous platforms with more ability to locally process sensor data and make tactical decisions. These platforms must take advantage of the latest technological capabilities for airborne and spaceborne systems. Otherwise, as the number and complexity of adversary systems grows, the legacy one-for-one acquisition approach ‐ i.e. building a platform to counter a specific enemy platform ‐ and the reliance on high-bandwidth data links supporting remote sensor data processing and tactical decision making will prove fundamentally unsustainable.

Amidst these challenges, Moore’s law provides opportunities for not only greater resiliency and efficiency of deployed systems against the new adversary, but also a class of new RF-based capability for such systems in all domains. Efficiency is achieved at two scales: first at the engagement level by a single platform conducting a broad variety of missions, and second at the payload level by optimizing resources onboard according to mission priorities.

Core Capabilities

The Hume Center's core expertise lies at the intersection of mission platforms and mission payloads. Emphasis of research focuses on the ability to perform analyze sensor inputs onboard in low-SWAP, heterogeneous computing environments, such that the payload can autonomously identify objects in its environment; the ability for high-level mission priorities to drive low-level technical processes in real time with the human out of the tactical loop but rather operating in a strategic control role; and the ability to manage payload resources according to mission goals in a distributed manner across several self-organizing nodes.

Core research in these areas include:

  • national security applications of smallsats;
  • mission-oriented satellite constellation design;
  • spacecraft bus engineering and orbital dynamics;
  • advanced lightweight aerospace structures;
  • airborne autonomous vehicles;
  • command, control, and communications for aerospace systems;
  • cognitive mission management;
  • joint optimization of platform and payload scheduling;
  • engineering design for system payloads;
  • payload size, weight, and power constraints; and
  • advanced sensing technology


Jonathan Black
Director and Research Professor
Jonathan Pitt
Associate Director
Michael Fowler
Assistant Director for Autonomous and Multiagent Systems

Department Personnel

Daniel Doyle
Research Assistant Professor
John Gilbert
Research Assistant Professor
Leon Harding
Research Associate Professor
Virginia (Reilly) Henson
Lab Project Coordinator
Justin Kauffman
Research Assistant Professor
David Kusterer
Computer Engineer
Zachary Leffke
Research Associate
Jeremy Ogorzalek
Research Associate
Kevin Schroeder
Research Scientist
Kevin Sterne
Research Associate
Steven Williams
Computer Engineer
Total: personnel